HUNNU 11567 Escaping(最大流)
标签:
EscapingTime Limit: 1000ms, Special Time Limit:2500ms, Memory Limit:65536KB
Total submit users: 13, Accepted users: 7
Problem 11567 : No special judgement
Problem description
One day, Large cruise ”Wu Kong” at sea. The station is represented by a square n*n divided into 1*1 blocks. Unfortunately , ” Wu Kong” hit an iceberg .It will sink after t minutes ,then every people die. However, there will be some life-saving equipment in some rooms(not only one), People from one room to reach another adjacent room (only four) needs one minute .If the people on board to get these life-saving devices so that they will survive, find the greatest number of people can survive.
Input
The first line contains two integers n and t (2?≤?n?≤?10, 1?≤?t?≤?10). Each of the next n lines contains n integers(0<=A[i][j]<=9).the people number at this time. Each of the next n more lines contains n integers, Indicates that the room have the number of life-saving equipment(0<=B[i][j]<=9).
Output
Print a single number — the maximum number of people who will be saved.
Sample Input
3 3 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 3
Sample Output
2
Problem Source
2014哈尔滨理工大学秋季训练赛
题意:有个N*N的房间,每个房间可能有人和逃生工具,A巨阵表示每个房间人数的状况,B巨阵表示每个房间的逃生工具数量的状况。现在那些人有 t 个时间去找逃生工具逃生,每个逃生工具只能给一个人使用。问最多有多少人逃生成功。
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
#define captype int
const int MAXN = 1010; //点的总数
const int MAXM = 400010; //边的总数
const int INF = 1<<30;
struct EDG{
int to,next;
captype cap,flow;
} edg[MAXM];
int eid,head[MAXN];
int gap[MAXN]; //每种距离(或可认为是高度)点的个数
int dis[MAXN]; //每个点到终点eNode 的最短距离
int cur[MAXN]; //cur[u] 表示从u点出发可流经 cur[u] 号边
int pre[MAXN];
void init(){
eid=0;
memset(head,-1,sizeof(head));
}
//有向边 三个参数,无向边4个参数
void addEdg(int u,int v,captype c,captype rc=0){
edg[eid].to=v; edg[eid].next=head[u];
edg[eid].cap=c; edg[eid].flow=0; head[u]=eid++;
edg[eid].to=u; edg[eid].next=head[v];
edg[eid].cap=rc; edg[eid].flow=0; head[v]=eid++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包括源点和汇点的总点个数,这个一定要注意
memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -1;
gap[0]=n;
captype ans=0; //最大流
int u=sNode;
while(dis[sNode]<n){ //判断从sNode点有没有流向下一个相邻的点
if(u==eNode){ //找到一条可增流的路
captype Min=INF ;
int inser;
for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]) //从这条可增流的路找到最多可增的流量Min
if(Min>edg[i].cap-edg[i].flow){
Min=edg[i].cap-edg[i].flow;
inser=i;
}
for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]){
edg[i].flow+=Min;
edg[i^1].flow-=Min; //可回流的边的流量
}
ans+=Min;
u=edg[inser^1].to;
continue;
}
bool flag = false; //判断能否从u点出发可往相邻点流
int v;
for(int i=cur[u]; i!=-1; i=edg[i].next){
v=edg[i].to;
if(edg[i].cap-edg[i].flow>0 && dis[u]==dis[v]+1){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
//如果上面没有找到一个可流的相邻点,则改变出发点u的距离(也可认为是高度)为相邻可流点的最小距离+1
int Mind= n;
for(int i=head[u]; i!=-1; i=edg[i].next)
if(edg[i].cap-edg[i].flow>0 && Mind>dis[edg[i].to]){
Mind=dis[edg[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==0) return ans; //当dis[u]这种距离的点没有了,也就不可能从源点出发找到一条增广流路径
//因为汇点到当前点的距离只有一种,那么从源点到汇点必然经过当前点,然而当前点又没能找到可流向的点,那么必然断流
dis[u]=Mind+1;//如果找到一个可流的相邻点,则距离为相邻点距离+1,,如果找不到,则为n+1
gap[dis[u]]++;
if(u!=sNode) u=edg[pre[u]^1].to; //退一条边
}
return ans;
}
struct NODE{
int u , t;
};
int A[15][15],B[15][15],n,tim1 , dir[4][2]={0,1,0,-1,1,0,-1,0};
void bfs(int x,int y)
{
queue<NODE>q;
NODE now,pre;
int S;
bool vist[15][15]={0};
now.u=x*n+y;
now.t=tim1;
S=now.u;
vist[x][y]=1;
q.push(now);
while(!q.empty())
{
pre=q.front(); q.pop();
x=pre.u/n; y=pre.u%n;
if(B[x][y])
addEdg(S , pre.u+n*n, INF);
if(pre.t==0)continue;
for(int e=0; e<4; e++)
{
int tx=x+dir[e][0] , ty=y+dir[e][1];
if(tx>=0&&tx<n&&ty>=0&&ty<n&&vist[tx][ty]==0){
vist[tx][ty]=1;
now.u=tx*n+ty;
now.t=pre.t-1;
q.push(now);
}
}
}
}
int main()
{
while(scanf("%d%d",&n,&tim1)>0)
{
int vs,vt ;
vs = n*n*2 ;
vt = vs+1;
init();
for(int i=0; i<n; i++)
for(int j=0; j<n; j++){
scanf("%d",&A[i][j]);
if(A[i][j])
addEdg(vs , i*n+j , A[i][j]);
}
for(int i=0; i<n; i++)
for(int j=0; j<n; j++){
scanf("%d",&B[i][j]);
if(B[i][j])
addEdg(i*n+j+n*n , vt, B[i][j]);
}
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
if(A[i][j])
bfs(i,j);
printf("%d\n",maxFlow_sap(vs , vt , vt+1));
}
}
温馨提示: 本文由Jm博客推荐,转载请保留链接: https://www.jmwww.net/file/68692.html